In This Issue

Make a Non-Pyro Dual-Deployment Rocket
A Plan for Safer Rocket Deployment

Cover Home: www.apogeerockets.com/Rocket_Kits/Skill_Level_3_Kits/Mustang
INTRODUCTION

I started flying model rockets at age 6 with my local 4H. It was only a matter of time until I discovered club launches, and then high power rockets quickly became a favorite. With each new rocket build, I like to observe how they perform. As I’ve flown to higher and higher altitudes, I’ve needed to walk further to retrieve the rockets, which got me interested in improving deployment systems. Unfortunately, minors (under 18 years) are not allowed to use additional explosive charges to separate the payload section from the booster section of a model rocket. Because of this, I wanted to design a dual-deployment model rocket system that did not require explosive charges outside the motor, so for my NARAM B division R&D presentation this year (and for science fair) I developed this project, Separation Anxiety, A Plan for Safer Rocket Deployment.

Part of my design goal, beyond a non-pyro dual deploy, was that the rocket be strong enough to land on concrete at my local flying field, and also withstand the stresses of I-motor flights up to 400 mph and 20 Gs. I also targeted a lower cost-per flight than standard dual deploy (typically $4-$8 per deployment).

I started researching dual deployment and found good sources: Peak of Flight Newsletter 362 https://www.apogeerockets.com/education/downloads/Newsletter362.pdf for details on how dual deployment works; Modern High Power Rocketry 2 by Mark Canepa is a great resource if you’re new to dual deploy; and there are several dual deploy links in the bibliography at the end of this article.

This was a very challenging project. In northern California there aren’t many places to launch, and I ended up having to fly several more flights than planned. I also had several electronics malfunctions, early main parachute releases, component fatigue, and aerodynamic destruction on a prototype that lead to a crash landing. I went over budget since I had to fly many more test flights than planned. However, once I got most of the problems debugged, the system proved to be reasonably effective.

BACKGROUND

Current model rocket deployment systems are limited to single motor ejection charges, extremely complicated CO2 systems, or explosive charges controlled by electronics. Since explosives are regulated substances, I wanted to come up with a design that was legal, safe, and simple to use.

“Dual Deploy” is a recovery technique using not only a primary parachute, but also a secondary parachute to reduce drift away from a launch site. With lower altitude rockets, drift isn’t often a problem. For instance, at 150m, a rocket won’t usually drift more than 150-300m away – which makes recovery simple. For flights at higher altitudes, dual deploy first releases a small parachute at apogee (peak altitude), descends rapidly from apogee, and at a pre-programmed altitude (45-350m) deploys a large main parachute for a slower descent.

Figure 1: How Dual Deploy Works: The Trade-off between Drag and Gravity

Continued on page 3
A Plan for Safer Rocket Deployment

Figure 2: Early Speed and Altitude Data

Early on, I ran simulations in RockSim to collect early altitude and speed data so I could determine when to deploy the motor ejection charge.

DESIGN ITERATIONS

I created and built two designs. Both designs used a typical 4” airframe booster with a 38mm motor mount (some flights were adapted down to 29mm). The booster used LOC tubing, Apogee 1/4” plywood centering rings, and laser cut TTW 1/8” plywood fins. For better durability and stability I would recommend using 1/4” plywood (or fiberglass) due to fin flutter.

The preliminary design had two hatches to release the two parachutes at specified times (the preliminary dual deployment system used hatches). The hatches were to be controlled by an Eggtimer altimeter I soldered from a kit. After ground testing, I had to switch hatch control over to a remote control system because I couldn’t make the altimeter interface with the servos due to an initial firmware bug.

The payload section of the prototype design was 40” long and had an altimeter bay with two hatch compartments actuated by model aircraft retract servos, which held the parachute assemblies. (Note the hatches and retract servos in the preliminary design in the next section.)

The preliminary design using hatches failed to deploy in its first test flight and was seriously damaged when it impacted the ground. Failure analysis of the flight caused me to rethink a design that would function better if I switched to a gravity release rather than hatches. Rather than building another copy of the questionable design, I adapted my design to simplify the non-explosive deployment mechanism using a coupler release.

The Final Design I created and built had a single coupler release held in place by a servo. The idea was that the black powder ejection charge in the motor itself would eject and separate a small parachute at apogee, with the payload section hanging underneath the drogue chute. When the rocket reached the pre-programmed altitude (between 150m and 50m) the Eggtimer altimeter would release the servo, causing the payload section to separate from the coupler it was linked to. This would pull out the main parachute for a soft final descent. (Note the coupler and red servo in the Final Design diagram above.)

Figure 4: Design Changes
The preliminary design failed to deploy, so I switched to a new coupler design. A servo released a coupler, which then used gravity to pull out the main chute.

The Final Design I created and built had a single coupler release held in place by a servo. The idea was that the black powder ejection charge in the motor itself would eject and separate a small parachute at apogee, with the payload section hanging underneath the drogue chute. When the rocket reached the pre-programmed altitude (between 150m and 50m) the Eggtimer altimeter would release the servo, causing the payload section to separate from the coupler it was linked to. This would pull out the main parachute for a soft final descent. (Note the coupler and red servo in the Final Design diagram above.)
A Plan for Safer Rocket Deployment

BUILD PROCEDURE

Currently all off-the-shelf deployment altimeters are set up to fire a burst of current to light an e-match to fire black powder, but lack the PWM modulation needed to control the external servo used for the coupler release. While possible to retrofit a standard altimeter, an easier, more reliable solution was an Eggtimer altimeter kit. This altimeter is sold as a solder kit, and costs $35. It’s very capable and in addition to data recording, pyro channels, airstarts, and dual deploy, it also has the software needed for servo controlling. While I had a few challenges with initial setup, designer Cris Erving released a software patch and it’s been a great altimeter and servo controller for this project.

ELECTRONICS BUILD

1. Inventory parts for Eggtimer altimeter; confirm all parts present.
2. Purchase any missing parts.
3. Solder Eggtimer kit components onto board (60+ solder points)
4. Attach resistors and servo wiring to Eggtimer for interfacing with servos

Note: I had to go back and find a missed jumper and solder it before I could get the altimeter kit working. This took multiple debugging sessions.

BUILD PROCEDURE/FINAL DESIGN

1. Using an existing length of 98mm body tube, use a hacksaw to cut a 23cm length. Cut off the back plate from nose cone to provide room for electronics.

2. Mark 76mm on the 98mm tube (bulkhead disk placement position). Glue (wood glue) a bulkhead disk 76mm into 23cm tube. Glue another bulkhead into 98mm coupler to provide anchor points. Drill 3 holes, evenly spaced on each bulkhead for pressure relief.

3. Use mouse sander to sand the glued coupler until the fit in the 98mm tube is extremely loose (for release ease).

4. Mark 5mm x 25mm slot in 98mm tube, and insert coupler 76mm into tube against the bulkhead disk previously glued. Cut out previously marked slot, cutting both tube and coupler. Mark an arrow on exterior of tube and coupler to be able to line up.

Egg-Payload Protectors

- Soft, flexible foam padding provides superior protection from cracking
- Conforms to the egg to eliminate pressure points
- TARC style for two eggs available
- Lightweight & reusable

Made by: Apogee Components

Page 4
up the tube and coupler slots.

5. Line up servo so that servo arm is over tube slot and mark position. Use epoxy to glue servo in place once servo position is verified as correct.

6. Insert avionics sled (previously built and recovered) into nose end of 98mm tube. Check that sled is seated correctly. Mark 5mm servo slot line above center of sled and cut small slot in line using Xacto knife. Thread servo wire through slot and connect into electronics. Tape down external portion of servo wire with masking tape to prevent aerodynamic disassembly.

7. Affix nose cone to rocket using masking tape to provide a snug fit. Add piece of Velcro to be able to secure additional altimeter.

DATA

Initial static design testing using the remote control system worked successfully, so the hatch setup was flown. However, the hatches didn’t stay closed during boost or deploy as planned. Motor eject backup prevented major damage to the booster, but the payload section was seriously damaged.

I decided on a new design with a simpler gravity release...
A Plan for Safer Rocket Deployment

deployment system with only one servo. I built, ground tested, and then flight-tested it to 166m with the main release via radio control (RC) at approximately 75m (flight three).

I then set up the Egg timer altimeter to deploy the main parachute rather than using RC control and flew three more test flights. None of the three flights deployed as planned. On the first flight the Egg timer released the main chute at apogee; on the second flight, the chute was not released; on the third flight I switched to RC control and my error led to the main chute being released at apogee again.

After these altimeter difficulties, I rechecked my wiring and servo outputs and ran five “vacuum” tests that used

Star Lift Mega Lander

Build It - Launch It - Stick The Landing

The Excitement Builds All The Way To Touchdown

- Large Size Rocket Flies on the Impressive Mid-Power Motors.
- Articulating Lander Legs Fold Up During Launch.
- Laser Cut Plywood Parts for a Strong Rocket.
- Pre-Slotted Tube Makes Construction Easier.
- Vinyl Decal for Visual Appeal.

Figure 9: Vacuum Testing to Confirm Altimeter Functionality

Figure 10: Vacuum testing dropped the pressure, tricking the altimeter into gathering “flight” data.

Figure 11: After two successful low altitude flights (Flights 7 and 8), a successful flight to 750m (Flight 9, green flight path) confirmed the coupler release worked for dual deploy recovery from higher altitudes. A failed flight to 750 m (Flight 10, purple flight path) shows the longer descent rate due to early main deployment.

Continued on page 7
A Plan for Safer Rocket Deployment

Experienced HPR Builders
Use Thrust Plates

- Eliminates Shear Forces on Centering Rings
- Mates with AeroPacks Flanged Engine Retainers
- Fits Standard HPR Tubes, Blue Tubes, and Fiberglass Tubes
- Made from Aircraft Grade Aluminum

www.ApogeeRockets.com

LAUNCH SUMMARY

The eleven launches included an airframe test, preliminary hatch deployment system testing, and final flights using a coupler release deployment.
A Plan for Safer Rocket Deployment

Continued from page 7

system. Only flights 3 and 7-9 worked successfully with dual deployment. The final two flights deployed early due to fatigue of the airframe and coupler.

CONCLUSION

While my initial design was not successful, my final design based on a gravity coupler release worked well. Static vacuum testing showed consistent results. Of the nine flights of the final design, four had successful deployment of both chutes, and three deployed successfully using the Eggtimer altimeter. The system worked successfully even in high altitude, high velocity situations. The release design for the main parachute worked reliably and was easy to prep for flight. However, after many flights the cardboard coupler assembly started to fail leading to early main parachute deployments.

This system enables a lower cost and simple alternative to handling black powder charges for dual parachute deployment. Total cost per flight is no more than the cost of the motor, as resetting the electronics and prepping the deployment system does not require black powder or igniters. My alternative design saves approximately $3-$5 per flight compared to the black powder ignition systems, and is legal for minors to use.

NEXT STEPS

I would like to investigate building a smaller, lower drag system to fit a sub-75mm diameter fiberglass airframe, with an internal servo to reduce drag. A fiberglass airframe should prevent the airframe and coupler from weakening, and a smaller airframe would make higher flights possible. I would also like to explore other kinds of high power rocket deployment and recovery systems.

BUDGET FACILITIES

I flew the rocket design at LUNAR club launches, both at Moffett Field, CA, and Snow Ranch, Farmington, CA. I laser cut the fins at Techshop San Jose. Static testing and build were done in Santa Cruz, CA.

The primary costs of the project were motors, as building supplies were fairly inexpensive and I already had all of the R/C gear used in early tests.
A Plan for Safer Rocket Deployment

The Egg timer and servo cost $35, which is quite inexpensive compared to similar black powder deployment altimeters.

ACKNOWLEDGMENTS AND HELP RECEIVED

Many thanks to: David Raimondi (President, LUNAR/Livermore Unit National Association of Rocketry) for suggestions based on his experience with parachute systems. Dave Cornelius (Vice President, AMA Engineering, Hampton, VA) for failure analysis help on my initial design. Cris Erving for Egg timer design and software support. The judges at Santa Cruz County Science Fair and California State Science Fair. Zach Dunn for support and encouragement. And my dad, Jay, for driving to launches, for ground support at launches, and for programming/debugging help with the altimeter editing interface (vi).

About the author:

Benno Kolland, age 16, has been flying rockets since 2005 and certified Junior L1 in October 2014. He’s especially interested in the propulsion aspects of rockets and high altitude flights, but also likes designing efficient recovery systems. He recently completed his first year as a TARC team captain, received a 4th place category medal at the California State Science Fair, and placed 1st in the NARAM 57 R&D B division. He is already planning for his L2 and L3 certification flights to take place in February 2017, right after he turns 18.

Bibliography:

